And TNF-a were analysed by flow cytometry. LPS with acylation defects induced significant higher 23388095 TNF-a and IL-12 synthesis at 2 h and 4 h post-stimulation compared to hexa-acyl LPS (Figure 4C and D). Title Loaded From File However, at 8 h post-stimulation, the level of intracellular cytokines was lower in DC treated with tetra-acyl LPS than in DC treated by hexa-acyl LPS (Figure 4E). It has been shown that glucose or energy deprivation, calcium homeostasis perturbation or elevated synthesis of secretory proteins Title Loaded From File Induce an alteration of the Endoplasmic Reticulum (ER) homeostasis [15,16]. This leads to the disruption of protein folding, the accumulation of unfolded proteins and ER stress response or unfolded protein response (UPR) to restore ER normal function. One of the major components of UPR is the degradation of misfolded proteins by the proteasome (ER associated degradation, ERAD) [15,16]. We therefore determined if the decrease of cytokine secretion observed in DC activated by tetra-acyl LPS could be due to a proteasome-mediated degradation of newly synthesized cytokines (Figure 5). Epoxomycine (Figure 5A) or Mg132 (Figure 5B) proteasome inhibitors were used in BMDC treated by the different LPS for 8 h and intracellular the IL-12 Table 1. Characteristics of LPS.aexpression was analysed. As expected, in the absence of proteasome inhibitors the level of intracellular IL-12 expression was lower in tetra-acyl LPS-treated DC than in hexa-acyl LPStreated DC. However, in the presence of proteasome inhibitors DC treated with tetra-acyl LPS levels of intracellular IL-12 were similar 1527786 to those expressed by DC treated with hexa-acyl LPS (Figure 5A and B). We then studied the ubiquitinylation of proteins following DC activation by different LPS. It has been shown that upon inflammatory stimulation, DC accumulate newly synthesized ubiquitinylated proteins in large cytosolic structures. These DC aggresome-like induced structures (DALIS) are transient and require continuous protein synthesis [16]. Mouse DC treated with LPS variants underwent maturation and displayed MHC II surface localization as well as DALIS formation (Figure 5C). However, after 4 h of tetra-acyl LPS treatment, the percentage of DALIS-containing cells was significantly higher as compared to cell stimulated by hexa-acyl LPS (Figure 5C). At 24 h, the number of DALIS decreased, consistent with the transient DALIS expression previously demonstrated in the process of DC maturation (not shown) [16]. These data strongly suggest that tetra-acyl LPS induce a degradation of IL-12 by the proteasome machinery in DC. It is therefore tempting to hypothesize that LPS with acylation defects could induce an ER stress in DC activating the proteasome machinery. This will lead to the down-regulation of cytokine intracellular levels and consequently to a decrease of their secretion.LPS with Acylation Defects Induce Antigen-specific CD8+ and CD4+ T cell ResponsesWe next studied the antigen presentation capacity of tetra-acyl LPS-treated DC and their ability to promote T cell responses (Figure 6). We used transgenic mice that express either a TCR specific for the MHC class-I restricted OVA (OT-I Rag-22/2) or a TCR specific for the MHC class-II restricted OVA (OT-II Rag22/2). BMDC incubated in either medium alone or medium containing ovalbumin (OVA) were activated by different LPS and co-cultured with OTI (CD8+) and OTII (CD4+) T cells for 3 days (Figure 6A). Basal level of T cell responses was determined.Bacterial strain (r.And TNF-a were analysed by flow cytometry. LPS with acylation defects induced significant higher 23388095 TNF-a and IL-12 synthesis at 2 h and 4 h post-stimulation compared to hexa-acyl LPS (Figure 4C and D). However, at 8 h post-stimulation, the level of intracellular cytokines was lower in DC treated with tetra-acyl LPS than in DC treated by hexa-acyl LPS (Figure 4E). It has been shown that glucose or energy deprivation, calcium homeostasis perturbation or elevated synthesis of secretory proteins induce an alteration of the Endoplasmic Reticulum (ER) homeostasis [15,16]. This leads to the disruption of protein folding, the accumulation of unfolded proteins and ER stress response or unfolded protein response (UPR) to restore ER normal function. One of the major components of UPR is the degradation of misfolded proteins by the proteasome (ER associated degradation, ERAD) [15,16]. We therefore determined if the decrease of cytokine secretion observed in DC activated by tetra-acyl LPS could be due to a proteasome-mediated degradation of newly synthesized cytokines (Figure 5). Epoxomycine (Figure 5A) or Mg132 (Figure 5B) proteasome inhibitors were used in BMDC treated by the different LPS for 8 h and intracellular the IL-12 Table 1. Characteristics of LPS.aexpression was analysed. As expected, in the absence of proteasome inhibitors the level of intracellular IL-12 expression was lower in tetra-acyl LPS-treated DC than in hexa-acyl LPStreated DC. However, in the presence of proteasome inhibitors DC treated with tetra-acyl LPS levels of intracellular IL-12 were similar 1527786 to those expressed by DC treated with hexa-acyl LPS (Figure 5A and B). We then studied the ubiquitinylation of proteins following DC activation by different LPS. It has been shown that upon inflammatory stimulation, DC accumulate newly synthesized ubiquitinylated proteins in large cytosolic structures. These DC aggresome-like induced structures (DALIS) are transient and require continuous protein synthesis [16]. Mouse DC treated with LPS variants underwent maturation and displayed MHC II surface localization as well as DALIS formation (Figure 5C). However, after 4 h of tetra-acyl LPS treatment, the percentage of DALIS-containing cells was significantly higher as compared to cell stimulated by hexa-acyl LPS (Figure 5C). At 24 h, the number of DALIS decreased, consistent with the transient DALIS expression previously demonstrated in the process of DC maturation (not shown) [16]. These data strongly suggest that tetra-acyl LPS induce a degradation of IL-12 by the proteasome machinery in DC. It is therefore tempting to hypothesize that LPS with acylation defects could induce an ER stress in DC activating the proteasome machinery. This will lead to the down-regulation of cytokine intracellular levels and consequently to a decrease of their secretion.LPS with Acylation Defects Induce Antigen-specific CD8+ and CD4+ T cell ResponsesWe next studied the antigen presentation capacity of tetra-acyl LPS-treated DC and their ability to promote T cell responses (Figure 6). We used transgenic mice that express either a TCR specific for the MHC class-I restricted OVA (OT-I Rag-22/2) or a TCR specific for the MHC class-II restricted OVA (OT-II Rag22/2). BMDC incubated in either medium alone or medium containing ovalbumin (OVA) were activated by different LPS and co-cultured with OTI (CD8+) and OTII (CD4+) T cells for 3 days (Figure 6A). Basal level of T cell responses was determined.Bacterial strain (r.